Journal of Fluorine Chemistry, 9 (1977) 147-151 0 Elsevier Sequoia %A., Lausanne - Printed in the Netherlands Received: in revised form October 24, 1976

CONCEPTUAL PROBLEMS IN NOBLE GAS AND FLUORINE CHEMISTRY, V:¹

THE DIFFERENCE IN THE REACTIONS OF THE ISOELECTRONIC XeOF₄ and IF₅ WITH KrF⁺

JOEL F. LIEBMAN

Department of Chemistry, University of Maryland Baltimore County B,altimore, Maryland 21228 (USA) and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (USA)2

SUMMARY

The isoelectronic XeOF_A and IF₅ show numerous similarities: molecular **geometry, formation of complexes with F- donors and acceptors, complexation** with graphite and with XeF₂. However, on reaction with KrF⁺, IF₅ forms an expected IF₆⁺ ion while XeOF_A forms XeF₅⁺ and 0_2 ⁺. In this paper we **discuss this discordance and present an explanation for it. Nucleophilic** displacement on fluorine by IF₅ forms the observed cation while the corresponding reaction with XeOF₄ is predicted to form the hypofluorite (XeF₄-OF)⁺. **Subsequent substitution and elimination reactions of this hypofluorite produce the observed product.**

DISCUSSION

The isoelectronic [3] $Xe0F_4$ and IF_5 show numerous chemical similarities. **Both species are square pyramidal as may be predicted form Nyholm-Gillespie** theory [4]. In addition, both form complexes with F⁻ donors [5,6] and F⁻

acceptors [5,6] and intercalate with graphite [6,7]. Stoichiometric complexes are formed by both with XeF₂ [5] and there are octahedral oxides, **Xe02F4 and** IOF [9] **corresponding to both species. However, a surprising** discordance arises in their reaction with KrF⁺ salts. IF₅ is cleanly oxidized to IF₆⁺ [10] in what appears to be a type 3, nucleophilic displace**ment reaction on fluorine [ll]:**

$$
\star_{\mathcal{N}}^{\mathsf{Kr}} \mathbf{F} \cdot \mathbf{F}_{5} \rightarrow \mathsf{Kr} + \mathsf{F} \cdot \mathbf{IF}_{5} \tag{1}
$$

XeOF₄ reacts with KrF⁺ but instead of forming the expected XeOF₅⁺ ion^[10], NMR and Raman evidence showed the formation of $0₂$ ⁺ and XeF₅⁺ [12]. In this **paper we wish to discuss this discordance and present an explanation for it.**

Let us consider the reaction of IF₅ with KrF⁺ first. The most nucleophilic site of the IF₅ molecule is the lone pair on iodine. As such, when **these species react, we anticipate formation of an** I-F **bond to form octahedral IF₆⁺. In contrast, consider XeOF_A. The xenon is less nucleophilic than the iodine as it has a higher oxidation number. In addition, xenon** has a formal positive charge in a major resonance structure of XeOF₄, F₄Xe⁺-O⁻ **D3]. Concommitantly, however, the oxygen is increased in nucleophilicity.** As such, we would expect formation of $(F_A \text{Xe-O-F})^+$, formally analogous to XeF₅⁺, but with an apical -0-F group replacing the somewhat more electro**negative -F.** We may also consider $(F_A Xe - 0 - F)^+$ a hypofluorite [4] with the electronegative ($F_A Xe^+$)- group attached.

The author had earlier made the suggestion $[15]$ that $F₂0$ is decomposed by aqueous base [16] through the attack of OH⁻ on the oxygen of a solventpolarized F₂O molecule. By analogy, we now hypothesize attack of XeOF₄ on a **(F4Xe-O-F)+ molecule:**

$$
F_4Xe^+ - 0 \sim \int_{0}^{F} \mathcal{N} \cdot 2 \cdot \int_{0}^{F} (F_4Xe - 0 - 0 - F)^+ + XeF_4
$$
 (2)

While XeF₄ is not observed among the reaction products of XeOF_A and KrF⁺, our intuition suggests it would be fluorinated by either KrF^+ or $(F_A Xe-O-F)^+$. Indeed, we may also write a fluorination reaction of XeF_4 with $(F_4Xe-0-0-F)^+$:

$$
(F_4 \chi e^{-0.6} - F_4)^+ + \chi e F_4 \rightarrow F_4 \chi e + 0_2 + F \chi e F_4^+
$$
 (3)

Alternatively, $(F_4Xe-0-0-F)^+$ can decompose to $F_4Xe + 0_2^+ + F$ by low energy **fragmentation reactions analogous to that observed [17] for (F-O-O-F)+, i.e.**

$$
(\sum_{y=0}^{1} x + 2x + 0)^{2} = F - 2x + 1
$$

\n
$$
(\sum_{y=0}^{1} x + 2x + 0)^{2} + F
$$

\n
$$
(\sum_{y=0}^{1} x + 2x + 0)^{2} + F
$$

\n
$$
(4)
$$

We parenthetically note that 0_2F^+ salts are not formed from 0_2F_2 and Lewis Acids but instead 0_2^+ salts are formed [18]. We additionally note that our **mechanism suggests KrF+ will react with other nonmetal oxides and oxy fluorides to produce fluorocations [19].**

Let us return briefly to reaction (3). It is formally analogous to the s-elimination reactions of the organic chemist [20],

$$
\left(\frac{x-c^{2}C^{2}H}{2}\right)^{2} + B \rightarrow X + C = C + HB^{2}
$$
\n(5)

where X can be numerous electron-withdrawing groups such as substitued ammonio $(R_3N^+)_+$. This suggests that the oxygen formed in reaction (13) **should be the (excited state) singlet [21]. While we know of no studies of the reaction of singlet oxygen with any fluorocation, nonetheless we are** sure that the reaction with KrF^+ and $(F_4Xe-0-F)^+$ to form 0_2^+ , F, and either Kr or XeOF₄ would be exothermic [22]. As such, we are not surprised that **singlet oxygen (or its concommitant chemiluminescence) has not been reported** here, but we emphasize no effort has seemingly been made in looking for it.

In **conclusion, we find the seemingly anomalous difference in the** reactions of the isoelectronic XeOF₄ and IF₅ with KrF⁺ is directly explicable **in terms of the nucleophilic sites of these hexatomic molecules.**

ACKNOWLEDGMENTS

The author wishes to thank Drs. L. S. Bartell, N. Bartlett, R. J. Gillespie, I. Granoth, W. Falconer, R. G. Little and G. J. Schrobilgen for fruitful discussions on nonmetal chemistry and the isoelectronic principle and Deborah Van Vechten for her editorial suggestions. Finally, Dr. Jack Simons of the University of Utah is thanked for his hospitality and financial support (National Science Foundation Grant #CHE-75-19476).

REFERENCES

- **1 Paper** IV: J. **F. Liebman, J. Fluor. Chem. 7 (1976) 531.**
- **2 Permanent Address: University of Maryland Baltimore County**
- **3a H. A. Bent, J. Chem. Ed., 43 (1966) 171.**
- 3b J. F. Liebman, ibid, 48 (1971) 188.
- **4 R. J. Gillespie, ibid, 40 (1963) 295.**
- **5 N. Bartlett and F. 0. Sladky, in "Comprehensive Inorganic Chemistry", J. C. Bailar, H. J. Emeleus, Sir R. Nyholm and A. F. Trotman - Dickenson (editors) Pergamon Press Ltd., Oxford, 2nd Ed., (1973)p213-350.**
- **6 A. J. Downs and C. J. Adams, "Comprehensive Inorganic Chemistry", op. cit. Vol. 2, Chapter 26, p. 1476 (section 4C).**
- **7 H. Selig and 0. Gani, Inorg. Nucl. Chem. Lett., 11 (1975) 75.**
- 8 J. L. Huston, J. Amer. Chem. Soc., 93 (1971) 5255.
- **9** L. S. Bartell, F. B. Clippard and E. J. Jacob, Acta Cryst., A28 **(1972) S 58, and personal communication from Profs. Bartell and Jacobs.**
- **10 D. E. McKee, C. J. Adams, A. Zalkin and N. Bartlett, J. Chem. Sot. Chem. Commun., 26 (1973).**
- **11 J. F. Liebman and B. B. Jarvis, J. Fluor. Chem., 5, (1975) 41.**
- **12 J. H. Holloway and G. J. Schrobilgen, J. Chem. Sot. Chem. Commun., 623 (1975).**
- **13 T. X. Carroll, R. W. Shaw, Jr., T. D. Thomas, C. Kindle and N. Bartlett,** J. Amerc. **Chem. Sot., 96, (1974) 1989.**
- **14 M. Lustig and** J. **M; Shreeve, in Adv. Fluor. Chem., Vol. 17,** J. C. **Tatlow, R. D. Peacock and H. H. Hyman, (Editors) CRC Press, Cleveland, 1973) p. 175.**
- **15** J. F. Liebman and T. H. Vanderspurt, J. Fluor. Chem., 2, (1972/3) 413.
- **16 "Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry," Vol.** II, **Supplement** I, **Wiley, New** York, **(1956) p. 188.**
- **17 T.** J. **Malone and H. A. McGee, Jr.,** J. **Phys. Chem., 70, (1966) 316, 71 (1967) 3060. -**
- **18** J; **N. Keith,** I. J. **Solomon, I. Sheft and H. H. Hyman, Inorg. Chem., z (1968) 230.**
- **19 G.** J. **Schrobilgen, personal conunication.**
- **20a F. C. Bordwell, Accounts Chem. Res., 5 (1972) 374.**
- **20b** W. H. Saunders, ibid, 9 (1976) 19.
- **21 C. S. Foote, ibid, 1, (1968) 104.**
- **22** Since KrF⁺ oxidizes ground state $0₂$ to $0₂⁺$, (see ref. [12], we expect the excited singlet state of $0₂$ to be likewise ionized.)